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AbslraeL We report numerical results for lmlization induced by disorder on a conlinu- 
ous random network. A simple tight-binding model and a Hamiltonian with off-diagonal 
disorder are used lo calculate the localization properties of electronic states. For both 
models, localization occurs at the upper band edge. In  addition, off-diagonal disorder 
leads to localization at  lhe lower band edge. For both models the density of states, 
mobility edges and localization lengths have been calculated, leading to significant differ- 
en-. We discuss the possibility of extending the model to systems in three dimensions, 
like amorphous semicondueton. 

1. Introductiou 

In solid state theory, several models have been established to study the properties of 
disordered systems. They can be described by the geometry of the system, usually 
based on a regular lattice, and by a tight-binding Hamiltonian reading 

A = C E ; E f E ;  + CyjEfEj 
i j # i  

where E, and E: are creation and annihilation operators operating on  the space of 
atomic orbitals li) located at the lattice sites. The basis is assumed to be orthogonal. 

In the original Anderson model (Anderson 1958), the diagonal elements of the 
Hamiltonian can vary uniformly from -W'/ZV to fM'/2V, wheras the interaction 
y ,  is a constant between nearest neighbours. Due to a fundamental theorem of 
Anderson (1958) all eigenfunctiom of a disordered system become localized if the 
disorder exceeds some specific value W,. For a given value 1.17 < W, the density of 
states can be divided into a part where all states are localized and into another part 
containing extended states only. These are separated by a mobility edge E, (Ziman 
1969, Mott and Davis 1971). This behawour has also been observed in systems with 
off-diagonal disorder (Gibbons el a1 1988) or in the quantum percolation problem 
(Soukoulis ef al 1987, Koslowski and von Niessen 1990, 1991). The existence of 
localized states has a tremendous influence on zero degree transport properties. As 
charge transport between localized states is only allowed by phonon assisted hopping, 
requiring a non-zero temperature, systems exhibiting localized states at the Fermi 
energy become insulators in the limit T - 0 K. 
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Disordered systems with covalent bonds l i e  amorphous silicon and other tetra- 
hedrally coordinated amorphous semiconductors can be described by a continuous 
random network (CRN). Within this network, each atom has the same coordination 
number Z as in the crystalline solid, but long range topological order is destroyed. 
Distortions of bond lengths and angles from the values of crystalline solids are small. 
The properties of a hand-build model almost fulfilling these conditions has been con- 
structed by Polk for the first time (Polk 1971). It is widely accepted that amorphous 
solids show localized states at the band edges (Elliott 1983), so the question whether 
CRNS will also exhibit this feature arises almost automatically. 

In this article we present a quantitative calculation of the localization properties 
of the eigenstates of a simple CRN. Due to the scaring theory of localization, localized 
eigenstates will be favoured by a small Euclidean dimension D. As D = 2 is the 
smallest possible dimension that allows topological disorder, we have constructed a 
CRN derived from the square lattice. The role of topological disorder will be studied 
by using a nearest neighbour tight-binding Hamiltonian. To study the influence of 
bond length variation, a Hamiltonian with a r-dependent potential is used. In order 
to generate a continuous bond length distribution, the CRN has been relaxed by 
a Monte Carlo method, using the Keating potential (Keating 1966). The scheme 
presented here can be applied to threedimensional systems, including the diamond 
lattice. 

In the following section we describe the method of constructing a CRN, the re- 
laxation procedure and the model Hamiltonians. A detailed description of the way 
localization properties are obtained will be given. Results are reported in section 3, 
with a special emphasis on charge transport at low temperatures. The influence of 
different model Hamiltonians on localization properties is discussed, we give an out- 
look onto three dimensional systems. In section 4, conclusions of the work reported 
in this article will be given. 

2. Methods 

There are numerous ways of constructing a CRN, including hand build, computer 
modified and computer generated models (Elliott 1983, Duffy el al 1974). For our 
calculation of localization on a CRN, the model should fulfil the following require- 
ments: (a) it has to be generatcd easily on a computer, saving computer time and 
allowing a large number of realizations; (b) no dangling bonds should be included, 
so the model represents an idealized amorphous solid without any additional defects; 
(c) each atom should be surrounded by four nearest neighbours, regardless of its 
position, so cyclic boundary conditions have to be imposed. We decided to use the 
vacancy model of Dum and co-workers (Dum el a/ 1974), which fulfils all of the 
rcquiremenis mentioned above. 

On a square lattice, each atom is surrounded by four nearest neighbours (left = I, 
right = r, top = t, bottom = b). Whenever it is decided to eliminate an atom, two 
new bonds will be created, symbolized by a simple line (-). There are two ways Of 
connecting the neighbours of the vacancy without bond crossing. Either a (t-+bond 
and a (b-1)-bond or a @-])-bond and a (b-r)-bond may be formed. In our realization 
of the model, each configuration may appear with probability 1 L  For a specific 
vacancy, the actual bond configuration is chosen randomly. To avoid the formation of 
double bonds, no neighbour of a vacancy can be changed into a vacancy. Only atoms 
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showing an even column index and an even row index have been taken into account 
as a vacancy candidate, so this problem is avoided automatically. The probability p 
of changing a vacancy candidate into a vacancy is chosen as the disorder parameter 
of the model. lb obtain the actual vacancy rate, p has to be divided by a factor 
of four. The elimination of an atom leads to the creation of two three-membered 
rings and one six-membered ring, erasing four four-membered rings. RI illustrate the 
topology of a network created in this way, a 20 x 20 lattice is shown in figure 1 
( p  = 0.4). Although the lattice has been relaxed, the topology is the same as it is in 
the unrelaxed case. 

Figure 1. Continuous random network, 20 x 20, p = 0.4, after 400 Monte Carlo steps. 

The procedure of creating a CRN as described above introduces additional strain 
to the lattice. In any real lattice, the large distortions in bond lengths and bond 
angles will lead to a relaxation of the lattice. For this relaxation, we use the well 
known Keating potential (Keating 1966) 

with R;, = I T <  - rjl, n/P = 3, which corresponds to the Keating parameters for 
amorphous silicon. The second sum spans all distinct pairs of neighbours of z. The 
first term in equation (2) describes an atomatom interaction, the second term a 
bond-bond interaction. For each realization, the length scale has been changed in a 
way that the average nearest neighbour distance R, of the disordered systems equals 
R, of the crystalline system, ensuring that the amorphous phase has the same density 
as the crystalline phase. IIb look for a potential energy minimum, we have used a 
Monte Carlo method. For a system containing n atoms, n Monte Carlo steps have 
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been performed. On the average, the attempt to move each atom has been made once 
for every Monte Carlo step. The maximum atomic displacement has been set to one 
tenth of R,, the temperature has been set to zero. So an attempt to move an atom 
has only been put into effect if it had caused a decrease in energy. As the change in 
energy due to moving an atom can be calculated from a local configuration, the Monte 
Carlo relaxation can be performed very efficiently. It should be noted that a broad 
distribution of the bond angle persists after the relaxation has been performed. As 
both the tight-binding Hamiltonian and the extended Hiickel Hamiltonian described 
below do not include any angle-dependent terms, this distribution of bond angles 
does not introduce any additional disorder. 
'MO model Hamiltonians are used for the calculation of the electronic properties 

of the system. The first model is a simple nearest neighbour tight-binding model. In 
equation (I), Vij equals 1 / Z  if i and j are nearest neighbours, Vij equals zero else. 
In the second model, y j  is a function of distance: 
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V. - (R)=  ' I  V,(1 +bR+ ib2R2)e-"RO($bR0-bR) (3) 

where b is a gauge factor, which guarantees that y j ( R o )  = 1/4. So the nearest 
neighbour matrix element of the simple tight-binding Hamiltonian equals the matrix 
element of the Hamiltonian described by equation (3). taken at the point of average 
nearest neighbour distance R,. Equation (3) is related to extended Hiickel theory 
(Hoffmann 1963) where the elements of the Hamiltonian matrix are proportional to 
the matrix elements of the overlap matrix. In the case of the above Hamiltonian, 
the overlap integral S has been calculated for two hydrogen atomic orbitals S = 
(ls,llsj). The Heawside function O(?,bR, - bR) forces a cut-off in V at distances 
larger than twice the average nearest ieighbour distance, so the Hamiltonian matrix 
remains sparse. The diagonal energy E of equation ( 1 )  is taken as zero in both 
models. 

IIb study the localization properties of the CRN, we use the TEL method of Thou- 
less, Edwards and Licciardello (Edwards and Thouless 1972, Licciardello and Thouless 
1975, 1978). These authors have been able to show that the energy shift A E caused 
by a change in boundary conditions is related to the conductivity of the system 

L is the system length, D its Euclidean dimension and 6E the average spacing of the 
energy levels. In practice, A E  and 6E are averages within a certain energy interval. 
Due to its large fluctuations, A E  is usually taken as a geometric mean. The scaling 
behaviour of u(L) has been used by several authors to study the Anderson problem 
on a large variety of lattices, (Licciardello and Thouless 1975, 1978). Localization 
properties in a magnetic field and under the influence of spin-orbit coupling (Ando 
1988, 1989) or the quantum percolation problem (Koslowski and von Niessen 1990, 
1991). In two dimensions, the  dimensionless conductance G( L )  = A E ( L ) / 6 E ( L ) ,  
which is usually taken as the scaling variable, is proportional to U(  L ) ,  SO no dilliculties 
arise in choosing the correct scaling variable. 4 is often called the Thouless number. 

In the numerical work we proceed as follows. For each realization, we calculate 
the eigenvalues for cyclic boundary conditions and for modified cyclic boundary con- 
ditions in one direction. For modified boundary conditions, matrix elements that con- 
nect opposite lattice sides have been multiplied by a factor (1 - Q), with ?j = 1/100. 
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This strategy is similar to the one we applied to the quantum percolation prob- 
lem (Koslowski and von Niessen 1990, 1991). Whereas for the quantum percolation 
problem a weak coupling scheme has been used for cyclic boundary conditions, the 
weak decoupling scheme described above conserves the topology of the lattice and 
allows the introduction of cyclic boundaly conditions. Using this small decoupling, 
eigenvalue crossings are avoided, which usually lead to difficulties in the analysis of 
data within the framework of the EL method. The Thouless number for the weak 
decoupling case will be denoted by g. It differs from the strong decoupling Thouless 
number 3 only by a ans tan t  factor, not affecting its scaling behaviour. Whenever 
g( L) increases with increasing system size L, i.e. the function p(  L) = d In  g/d In L 
is larger than zero, the corresponding eigenstates are extended. If g( L) decreases 
with increasing lattice size, i.e. the function p (  L) = d In g/d In L is smaller than 
zero, the corresponding eigenstates are localized. This interpretation is the same as 
in the scaling theory of localization (Abraham et a1 1979). Assuming an exponential 
behaviour of the conductance for localized states 

the localization length L,,, can be easily computed. 
For the large matrix diagonalizations, we used a Lanczos algorithm (Lanczos 1950, 

Cullum and Willoughby 1YS5). I t  is ideally suited for large sparse matrix calculations, 
if just eigenvalues, but no eigenvectors are required. 

3. Results and discussion 

We have studied the effects of topological disorder for p = 0.2, p = 0.4 and p = 0.8. 
Calculations have been performed on systems with a length L of 20, 30, 40 and 50 
R,, corresponding to a maximum number of 2375 sites. The number of realizations 
for each p and L value is listed in table 1. p is dimensionless, 4 V  has been chosen 
as the unit of energy, R, as the unit of length. 

Table 1. Number of r a l i t i o n s  used in the TEL analysis for the continuous random 
network and lhe relaxed version (CW-MC). 

= 0.2 = 0.4 p = 0.a 

CRN L = 20 904 1015 1285 
L = 30 173 197 2h2 

23 26 33 L = 50 

CRN-MC L = 20 (188 171 938 
129 145 177 
41 46 56 
17 19 23 

L = 40 55 62 a2 

L = 30 
L = 40 
L = 50 

Figure 2 shows a series of plots required for the TEL analysis of localization 
properties. They correspond to the simple tight-binding Hamiltonian (1). The energy 
spectrum has been divided into energy bins ol  width 0.045. Within each energy bin, 
the behaviour of -In g with increasing lattice size is plotted from the left. Intervals 
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containing localized states are marked with an L. For all values of p, localized states 
can be observed at the upper band edge, whereas the lower band edge is not effected 
by topological disorder. The part of the spectrum containing localized states is 
increasing with increasing disorder, the mobility edge gradually moves into the interior 
part of the band. However, it should be noted that the major part of the spectrum is 
dominated by extended states even at large disorder p. This is the major difference to 
models such as quantum percolation or the Anderson model. Values for the mobility 
edges and the upper band edges are listed in table 2 Inverse localition lengths 
range from 0.029 f 0.005 to 0.13 f 0.02 for p = 0.4 and from 0.042 f 0.004 to 
0.36 f 0.05 for p = 0.8, continuously increasing from the mobility edge to the band 
edge. For p = 0.2, the localization length equals 0.055 i 0.008 in the single interval 
containing localized states. 

Th Koslowski and W von Niessen 

Tnbk 2. Upper (E.) and lower (E,) band edges, mobilily edges (B) and oplical energy 
(Eop) for the CRN and the relaxed CRN (CRN-MC). 

p = 0.2 p = 0.4 p =0.8 

CRN E, 0.97 0.88 0.65 
Eo, 0.90 os0 0.60 
E. 0.98 0.95 0.88 

CRN.MC EL -1.08 -0.97 -0.81 
El -1.40 =-1.5 <-1.5 

E," 0.78 0.73 0.62 
E. 0.95 0.86 0.81 

Localization at the upper band edge can be explained by the picture of bond 
frustration (Singh 1981, &hen 1983). At the upper band edge, the wave function 
has to be antibonding, it has to alternate when going from one lattice site to an- 
other. This is only possible for structures that contain rings with an even number of 
atoms. Whenever an odd ring is introduced, at least one bond of that ring has to 
be frustrated. The creation of frustrated bonds leads to a significant degree of disor- 
der, which causes localization of those states most sensitive to this type of disorder. 
According to Singh (1981) and Cohen (1983), there exists a characteristic energy for 
topologically disordered systems, called the optical energy 

where Y is the minimum number of frustrated bonds, divided by the total number of 
sites. Each vacancy introduces two frustrated bonds, connecting two pairs of atoms. 
As only one out of four atoms can be eliminated, equation (6) leads to 

Eop = (1 - p / 2 ) .  (7) 

As required by Singh (1983), the optical energy serves as a lower boundaly for the 
mobility edge. 

The density of states (DOS) of the tight-binding Hamiltonian is shown in figure 
3. For all values of p ,  the lower band edge equals the band edge of the crystalline 
system, E = -1.0. The part of the spectrum containing localized states has been 
shaded. At p = 0.2, the density of states looks similar to the DOS for a finite-ordered 
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Figure 2. Negative logarithm of the Thouless nun- 
ber as a function of energy for the CRN. Energy in 
units of t V. 

p' 0.80 

I.;-i.-i$ a a  4 . 6  a0 E 0.' aa 

Figure 3. Density of states for the CRN. Energy in 
units of iV, density of slates in arbitrary units. 
Localized parts have been shaded. 

system. There is maximum DOS at E = 0, which turns into a singularity for an 
infinite-ordered system. Only at the upper band edge, a very small region of localized 
states exists. The upper band edge is moving to smaller values of E with increasing 
disorder, but in a much smoother way than the mobility edge does. So the part of 
the spectrum containing localized states is increasing with increasing disorder. 

The same analysis has been performed for a relaxed CRN. Its electronic properties 
are calculated from an extended Huckel Hamiltonian with an interaction given by 
equation (3). The TEL plots are shown in figure 4, the width of an energy bin equals 
0.053. The same vacancy concentrations have been used for both the tight-binding and 
the extended Huckel Hamiltonian. At the upper band edge, localization properties 
are similar to those of the simple tight-binding Hamiltonian. There is a region 
dominated by localized states, moving to values of lower energy with increasing p .  In 
mntrast to the behaviour observed for the tight-binding Hamiltonian, the total width 
of the localized part of the spectrum does not depend on the vacancy concentration. 
In addition to localization at the upper band edge, localization which is induced by 
off-diagonal disorder can be observed at the lower band edge. It is restricted to a 
part of the spectrum which shows a small density of states, in qualitative agreement 
with mean field theories of localization (Winn and Logan 1990). Upper band inverse 
localization lengths range from 0.014 0.005 to 0.44 5 0.04 for p = 0.2, from 0.063 f 
0.005 to 0.31 f 0.02 for p = 0.4 and from 0.020 f 0.007 to 0.26 f 0.04 for p = 0.8, 
covering a smaller length scale than the tight-binding localization lengths. In this 
model, the optical energy is no longer a lower boundary for the mobility edge. The 
density of states for the extended Huckel Hamiltonian is shown in figure 5. Localized 
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Figure 4. Negative logarithm of ihe Thoulas num 
ber as a function at energy for the relaxed CRN 
Energy in units oC Vo. 

-1.2 -0.8 4, L O  0,' 0.8 

E 

Figure 5. Densiiy of slats for ihe rclaxcd CRN. 
Energy in units of VO, density of states in arbiirary 
mils. 

parts of the spectrum have been shaded. 
In two dimensions, variable range hopping can be described similar to Mott's 

T-' /4  law (Mott 1968). In the hopping regime, the conductivity is expected to obey 
a "-'I3 law (Hamilton 1972): 

U = A ~ x ~ ( - - B / T " ~ ) .  (8) 
The exponential factor B depends on the density of states and the localization length 
at the Fermi level. Thus, B can be calculated by the scheme presented above, giving 
direct connection to a hypothetical experiment, if the Fermi energy lies within the 
region of localized states. 

According to the scaling theoty of localization, no extended states should occur for 
any amount Of disorder in two-dimensional systems (Abraham el a! 1979). Whereas 
this bchaviour is in good agreement with numerical calculations for thc Anderson 
model (MacKinnon and Kramer 1983), there are doubts whether the scaling theory 
holds for system with off-diagonal disorder like the  quantum percolation model (Meu 
el a1 1989, Koslowski and von Niessen 1990) The localization behaviour for CRNS 
clearly is in  contrast to the scaling theory. Extended states do not disappear even at 
very large vacancy concentrations. On the other hand, weak localization may occur on 
a length Scale much larger than the maximum system length used in this calculation, 
which cannot be detected with the TEL method. 

As mentioned above, the creation of a continuous random network using the 
vacancy model can be easily extended to three-dimensional systems. Actually, it was 
designed to create a CRN on the diamond lattice (Duffy el a1 1974). The creation 
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of five-membered rings on a diamond lattice will lead to much less ring tension than 
induced by the quite rigid three-membered rings on the square lattice.. So a Keating 
relaxation will lead to a much sharper distribution of bond angles with a single 
maximum. Extended Hiickel calculations have already been performed successfully 
on clusters of amorphous silicon and hydrogenated amorphous silicon (Han and Dai 
1989). They can be easily applied to a CRN, followed by a TEL analysis of the 
eigenvalues. No prediction of localization properties on CRNs in three dimensions 
can be made from the calculations described above. Localization will be suppressed 
by a high Euclidean dimension on one side. On the other side, it will be enhanced 
by the participation of p orbitals at the band edges (Singh 1981), because interaction 
integrals including p orbitals are more sensitive to a variation of dihedral angles, 
leading to large variation in these integrals. Numerical work is in progress to resolve 
this problem. 

4. Conclusions 

In this article, we have reported numerical results for localization induced by disorder 
on a continuous random network. A simple tight-binding modcl and a Hamiltonian 
with off-diagonal disorder have been used to calculate the localization behaviour of 
electronic states. Localization properties like mobility edges or localization lengths 
significantly depend on the model Hamiltonian used. Off-diagonal order leads to 
lower-band localization, a feature not predicted by the simple tight-binding Hamilto- 
nian. We think that the choice of the appropriate model Hamiltonian is much more 
important for the calculation of localizatio~~ properties than it is for a band structure 
calculation. 
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